Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells
نویسندگان
چکیده
BACKGROUND Restructuring chromatin into morphologically distinct chromosomes is essential for cell division, but the molecular mechanisms underlying this process are poorly understood. Condensin complexes have been proposed as key factors, although controversial conclusions about their contribution to chromosome structure were reached by different experimental approaches in fixed cells or cell extracts. Their function under physiological conditions still needs to be defined. RESULTS Here, we investigated the specific functions of condensin I and II in live cells by fluorescence microscopy and RNAi depletion. Photobleaching and quantitative time-lapse imaging showed that GFP-tagged condensin II bound stably to chromosomes throughout mitosis. By contrast, the canonical condensin I interacted dynamically with chromatin after completion of prophase compaction, reaching steady-state levels on chromosomes before congression. In condensin I-depleted cells, compaction was normal, but chromosomes were mechanically labile and unable to withstand spindle forces during alignment. However, normal levels of condensin II were not required for chromosome stability. CONCLUSIONS We conclude that while condensin I seems dispensable for normal chromosome compaction, its dynamic binding after nuclear envelope breakdown locks already condensed chromatin in a rigid state required for mechanically stable spindle attachment.
منابع مشابه
Distinct functions of condensin I and II in mitotic chromosome assembly.
Condensin is a protein complex associated with mitotic chromosomes that has been implicated in chromosome condensation. In vertebrates, two types of condensin complexes have recently been identified, called condensin I and II. Here, we show that in mammalian cells condensin II associates with chromatin in prophase, in contrast to condensin I which is cytoplasmic and can thus interact with chrom...
متن کاملContrasting roles of condensin I and condensin II in mitotic chromosome formation.
In vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell ima...
متن کاملMetaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation
Mitotic chromosome assembly remains a big mystery in biology. Condensin complexes are pivotal for chromosome architecture yet how they shape mitotic chromatin remains unknown. Using acute inactivation approaches and live-cell imaging in Drosophila embryos, we dissect the role of condensin I in the maintenance of mitotic chromosome structure with unprecedented temporal resolution. Removal of con...
متن کاملDrosophila Casein Kinase I Alpha Regulates Homolog Pairing and Genome Organization by Modulating Condensin II Subunit Cap-H2 Levels
The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Dr...
متن کاملAurora B controls the association of condensin I but not condensin II with mitotic chromosomes.
The assembly of mitotic chromosomes is controlled by condensin complexes. In vertebrates, condensin I binds to chromatin in prometaphase, confers rigidity to chromosomes and enables the release of cohesin complexes from chromosome arms, whereas condensin II associates with chromosomes in prophase and promotes their condensation. Both complexes are essential for chromosome segregation in anaphas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006